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OUTER PLANET PROBE ENGINEERING MODEL 
THERMAL VACUUM TEST 

BY: M. G. GROTE 

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY-EAST 

SUMMARY 
The thermal vacuum t e s t  was one o f  a ser ies o f  t es ts  t h a t  was run t o  v e r i f y  

the  thermal and s t ruc tu ra l  design concepts of the Outer Planet Probe. The tes ts  

were performed a t  NASA Ames Research Center and were supported by MDAC-EAST under 

NASA contract  NAS 2-9027. 

Eight  thermal vacuum t e s t  runs were performed t o  simulate both the  approach 

cru ise  and interp lanetary cru ise por t ions of the  probe mission. The approach 

cru ise  tes ts  v e r i f i e d  tha t  the probe can be cont ro l led  t o  a nominal 273°K 

temperature w i th  nine RHU's. Data from t h i s  t e s t  was used t o  cor re la te  an 

ana ly t i c  simulat ion f o r  the approach cru ise  phase. I n  addi t ion,  t e s t  techniques 

were developed which s i g n i f i c a n t l y  decreased the  required t e s t  time. Data from 

the interp lanetary c ru ise  runs were used t o  ca lcu la te  the thermal conductance 

between the probe and the bus spacecraft. 

The data generated i n  t h i s  thermal vacuum t e s t  program can be used t o  per- 

form fu tu re  studies on the thermal contro l  system. 



lNT ROOUCTION 

An atmospheric en t r y  probe i s  bei ng developec 

(ARC) t o  o b t a i n ( i n  situ)atmospheric measurements o f  the 

ASA Ames Research Center 

outer  planets i n  the 

1980's. The probe and a spacecraft bus w i l l  be launched toward the outer  planets 

using the Shut t le  and an IUS. During the in te rp lanetary  c ru ise  phase, the probe 

i s  attached t o  the spacecraft adapter. The probe i s  released from the spacecraft 

between 21 and 56 days p r i o r  t o  entry.  The release time i s  dependent on the 

ta rge t  planet.  During t h i s  approach c ru ise  phase the probe funct ions autonomously 

from a preprogrammed clock. The probe c o l l e c t s  data p r i o r  t o  and dur ing en t ry  as 

wel l  as dur ing subsonic f r e e f a l l .  

McDonnel 1 Doug1 as Astronautics Company-Eas t (MDAC-EAST) designed a probe 

f o r  Saturn and Uranus under NASA contract  NAS 2-7328 (Reference 1)and supported 

ARC i n  the fab r i ca t i on  o f  a f u l l - s c a l e  engineering model o f  the probe (Reference 2 ) .  

A ser ies o f  tests, as shown i n  Figure 1 , was conducted a t  ARC t o  v e r i f y  the 

s t ruc tu ra l  and thermal design o f  the model. MDAC-EAST supported these tes ts  under 

contract  NAS 2-9027. This repor t  describes the thermal vacuum tes t .  The resu l t s  

o f  the s t ruc tu ra l  t e s t  are presented i n  Reference 3. 

The thermal vacuum t e s t  consisted o f  e igh t  runs s imulat ing both the  approach 

c ru ise  and in te rp lanetary  c ru ise  phases o f  the f l i g h t .  A l l  o f  the runs were made 

i n  the thermal vacuum chamber a t  ARC. 
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THERMAL CONTROL SYSTEM 

During in terp lanetary cruise, the probe i s  attached t o  the spacecraft 's 
! 

conical adapter. The temperature w i t h i n  the probe i s  con t ro l l ed  between 233°K and 

273°K using rad ia tors  and commandable heaters located on the adapter. These temper- / 
a ture l i m i t s  w i l l  insure long ba t te ry  l i f e .  Selected equipment w i l l  be turned on 

pe r iod i ca l l y  t o  check the hea l th  o f  the probe. 

Depending on the planet, the  probe i s  separated f r o m  the spacecraft between 

21 and 56 days p r i o r  t o  entry .  The thermal cont ro l  system f o r  the approach c ru i se  i 
! 

phase i s  shown i n  Figure 2. The probe's i n te rna l  temperature w i l l  be maintained i 

between 263OK and 283OK using radioisotope heat ing u n i t s  (RHU 's) , mu1 t i 1  ayer 

i nsu la t i on  (YLI), and attachment f i t t i n g  radiators.  Tmperatures higher than 

283°K w i l l  begin t o  impose add i t iona l  thermal contro l  requirements dur ing descent. 

The bat te ry  requires a minimum temperature o f  278°K f o r  ac t iva t ion .  A heater i s  

located on the bat tery,  s ized t o  ra i se  the ba t te ry  temperature by as much as 15°C 

i f  necessary. The ba t te ry  hcater s ize  thus allows the 263OK lower l i m i t .  

4 



ATTACHMENT FITTINGS (3) 
ALUMINUM PAINT ( a = 0.3) 
GOLD TAPE ON EXPOSED 

AFT HEAT SHIELD 7 EDGES OF HEAT WIELD 7 
POLYURETHANE 

FIBERGLASS HONEY COMB - 2 1  
CARBON PHENOLIC_/ \ (EMPTY) 

HEAT SHIELD 
MULTlUY ER INSULATION BLANKET 
30 LAYERS DOUBLE ALUMINIZED MY U R  
M LAYERS DACRDN NET 
OUTER LAYER 3 mil MYLAR OVER ALUM 

THERMAL CONTROL SUBSYSTEM REFERENCE DESIGN 
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I 
I 

ENOINEERING MODEL CONFIGURATION 
! The mu1 t i  laye r  i nsb la t i on  blanket (MLI) consisted o f  30 layers of double 

aluminized mylar and 30 layers o f  B2A dacron net.  The inner  l aye r  was 1 m i l  

I double aluminized mylar, and the outside l aye r  was 3 m i l  s i ng le  aluminized mylar 

I w i t h  the mylar s ide out. I n te rna l  sp l ices were jo ined w i t h  6401000 aluminum tape 

(E = 0.03). The external sp l ices were covered w i t h  34850 tape ( c  = 0.57). The 
L 

blanket was held together w i t h  0.096-cm-diameter nylon fasteners. 

i t 

Figure 3 shows the completed blanket. There were two j o i n t s  i n  the blanket, : 

one around the circumference and one around the access door. These j o i n t s  were * 
held together w i t h  lac ing  buttons t o  f a c i l i t a t e  removal. r i g u r e  3 shows a close 

up view o f  the c i rcumferent ia l  j o i n t .  As shown, there was l oca l  puckering which 

could cause addi t ional  heat leaks from the j o i n t .  I n  f u t u r e  blankets i t  i s  

recommended t h a t  the j o i n t s  be taped t o  prevent the puckering. 

The openings f o r  the f i t t i n g s  are cu t  out, and a stepped foam c o l l a r  as shcwn 

i n  Figure 3 i s  inser ted and taped t o  the b lank t t .  Stat ic-discharge connectors made 

o f  copper f o i l  are f ~ s t e n e d  through the  blanket a t  the three f i t t i n g s  and a t  three 

locat ions around the cS rcumferential j o i n t .  The j o i n t  connectors ground the forward 

blanket t o  the a f t  blanket, and the a f t  blanket i s  grounded t o  the s t ruc ture  a t  the 

f i t t i n g s .  

The f i t t i n g s  are painted w i t h  aluminum pa in t  ( c  = 0.43). The exposed edges 

o f  the heat sh ie ld  near the f i t t i n g s  are taped w i t h  low emiss iv i ty  aluminum tape. 

F igure 4 presents the  proper t ies of a1 1 external surfaces. i 

A blanket was constructed f o r  the conical adapter using 10 layers o f  double I ; 
; 

aluminized mylar and 9 layers o f  dacron net. The inner  and outer  layers were i : - 
1-mil mater ia l ,  Figure 5 shows the  blanket being i n s t a l l e d  on the adapters. Three 

6.4 cm by 6.4 cm cutouts were made through the blanket, and these areas served as 

t h e  adapter radiators.  
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TEST METHODS 
Test methods were evolved using the f a c t  t h a t  any mass w i t h  f i x e d  thermal 

charac ter is t i cs  (e.g., the t ime constant) t h a t  i s  not i n  thermal equ i l i b r i um w i l l  

approach i t s  equi 1 i b r i  um (steady s ta te)  temperature i n  a predic table manner des- 

c r i  bed by the equation: 

Tr ' Tss = EXP ( - r /s )  
To - Tss 

o r  expressed i n  another form 

An ana ly t i c  simulat ion can be a powerful t oo l  i n  determining thermal vacuum 

t e s t  procedures. The t ime constant o f  the engineering model was estimated using 

the  ana ly t i c  s imulat ion described i n  Figure 9. Both a steady s ta te  and a t rans ien t  

case were run using the ana ly t i c  simulat ion. Figure 10 shows a p l o t  o f  ( d T / d ~ )  

vs T-TSS for  these cases. Using Equation ( 2 ) ,  the t ime c m s t a n t  i s  simply the 

rec iprocal  o f  the slope o f  Figure 10. Thus, i f  we know two temperatures one day 

apart, the steady s ta te  value can be estimated as: 

TSS = Tr + 14.2 (TT - Tr-l) ( 3 )  

The only data ava i lab le  i n  determining how close we are t o  the steady s t a t e  

r e s u l t s  i s  the r a t e  o f  temperature change. The measured r a t e  i s  no t  very useful  

unless one has an ana ly t i c  i n t e r p r e t a t i o n  o f  the ra te .  Equation (3) provides 

+ $ i s  i n te rp re ta t i on .  To insure t h a t  the engineering model i s  w i t h i n  1°K o f  the 

steady s t a t e  resu l ts ,  Equation (3) shows the the r a t e  must be less  than 0.07OK 

per day. A plat-inum resistance thermometer (PRT) was included i n  the instrumenta- 

t i o n  t o  measure the small temperature changes. 

The long time constant o f  the  engineering model . ~ u l d  r e s u l t  i n  long t e s t  

times. Thus, methods were evolved t o  accelerate the tes ts .  

11 



ANALYTIC SIMULATION Figure 9 
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PROBE TIME CONSTANT 
Figure 10 



Idea l ly ,  the f i r s t  run should be s ta r ted  near the steady s t a t e  answer. We 

could predetermine only  a range of possible steady s ta te  resu l t s  because o f  the 

uncer ta int ies i n  the ana ly t i c  simulat ion and the MLI performance. We could, 

though, make a b e t t e r  estimate of the steady s t a t e  resu l t s  by comparing the actual 

t rans ien t  temperature response t o  predetermined ana ly t i c  responses. 

Our goal was a steady s ta te  temperature of about 273OK. To accelerate the 

cooldown from room temperature, a l l  i n te rna l  heaters were turned o f f .  Zero load 

ana ly t i c  s imulat ion cases were run for  two values of MLI conductance, which i s  

equivalent t o  running w i t h  two d i f f e r e n t  t ime constants. A corresponding e i g h t  

wat t  steady s ta te  case was run f o r  each value. Knowing two t rans ien t  slopes and 

the corresponding steady s t a t e  resu l ts ,  a t h i r d  steady s t a t e  r e s u l t  could be pre- 

d i  cted knowing the cooldown slope. The fo l low ing est imator equation was thus 

derived f o r  t h i s  t e s t  program: 

T,,, = 352 - 9.6 (TT - T,-l ) ( 4 )  

where 

T 
T 

= Temperature a t  present t ime 

T~-l day = Temperature 1 day e a r l i e r  

T ~ ~ 8  = Estimated steady s ta te  val ce f o r  8 wat t  load 

During the course o f  the run, the temperdture r a t e  can be subst i tu ted i n t o  

Equation (3) t o  ob ta in  an estimate of the stead) s ta te  resu l ts .  The t e s t  engineer 

can then t u r n  on add i t iona l  heaters t o  ra i se  the temperature t o  the desired l eve l  , 

o r  the simulated RHU heater could be turned o f f  t o  accelerate the cooldown. This 

method should s i g n i f i c a n t l y  decrease the requi red t e s t  time. 



TEST SETUP n d  INSTRUMENTATION 
The model was instrumented w i t h  50 thermcouples (T/C) and one PRT. The 

adapter was instrumented w i th  an add i t iona l  11 TICS. Figures 11 through 14 

i d e n t i f y  the l oca t i on  o f  the TIC'S. 

Thi r teen heater sets were located w i t h i n  the  model and one addi t i o n a l  

se t  was located on the adapter f o r  the in te rp lanetary  c ru i se  simulation. Figure 

15 presents a summary o f  the heater capacit ies. Each heater se t  was connected 

t o  an i nd i v idua l  heater switch as shown i n  Figure 16. The simulated RHU heaters, 

such as shown i n  Figure 17, were located i n  the four  RHU f i t t i n g s  w i t h i n  the 

model. Figure 18 presents the i n s t a l l a t i o n  of a t yp i ca l  heater element on the 

i ns ide  o f  the adapter. 

A l l  o f  the TIC'S and heater wires were brought out i n  one w i re  bundle. 

Since t h i s  w i re  bundle i s  la rge  (>  2 cm dia.)  i t  could produce a s i g n i f i c a n t  heat 

leak. To prevent t h i s ,  the w i re  bundle was insu la ted  w i t h  a MLI  wrap and a 

heater was placed i n  the bundle about 30 cm from the model. This heater was 

dr iven by a d i f f e r e n t i a l  temperature measurenznt between the heater and the 

model. The heater input  i s  continuously adjusted by a var iable voltage cont ro l -  

l e r  t o  maintain a temperature d i f f e r e n t i a l  o f  less than 5°K. This resu l ted  i n  

a heat  lea^ o f  less  than 0.1 watt. A schematic o f  t h i s  setup i s  shown i n  Figure 

19. 

A l l  of the tes ts  were run i n  the e igh t - foo t  thermal vacuum chamber i n  Bldg. 

240 a t  NASAIARC. The major t e s t  equipment provided by ARC i s  presented i n  Figure 

20. TIC data were presented on the te le type and punched on a tape i n  rea l  time. 

The punched tape was then processed through the data system t o  produce a p r i n t o u t  

o f  the  temperature data. The operat ion o f  the  chamber was monitored from the 

cont ro l  panel shown i n  Figure 21. 



- 
T/C 
NO. - 
1MI 
101 
102 
103 
104 
105 
1116 
107 
108 
109 
110 
111 

112 
113 
114 
115 
116 
117 
118 
119 

120 
121 
122 
160 - 

LOCATION 

MAIN BATTERY 
BOOTSTRAP BATTERI 
BOOTSTRAP BATTERY 
MASS SPECTROMETER 
DATA SYSTEM 
TRANSHITTER 
TRANSMITTER 
MASS SPEC. MTG BRACKET 
RELAY BOX 
TEMPERATURE UNIT 
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END OF FITTING 
ON BASE OF WELDMENT 
AVERAGE TEMP 
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Based on the resu l t s  o f  the f i r s t  run, the approximate add i t iona l  watt-hrs 

(QA) t o  boost the model t o  steady-state condit icns could be calculated as: 

Figure 25 presents the  p l o t  o f  the bootstrap bat te ry  f o r  run No. 2. At the  

beginning o f  the run, the temperature was i n i  ti a1 l y  ra ised t o  the expected leve l .  

As w i th  Run No, 1, only one addi t ional  temperature adjustment was necessary. 

Following Run No. 2, the simulated prz-entry power p r o f i l e  o f  Figure 7 was 

inpu t  according t o  the schedule presented i n  Figure 16. The resu l t s  o f  

selected temperatures f o r  Run No. 3 are presented i n  Figure 26 and show 

tha t  the bat te ry  heater ra ises the  bat te ry  temperature by the required 15°K. 

A f te r  the bat te ry  heater was shut of f ,  the temperature began t o  decline. I n  

actual operations, the bat te ry  would be kept a t  278°K by a sol id-state thermostat. 

Figure 27 presents the time h i s to ry  o f  the bootstrap bat te ry  f o r  Run No. 4. 

Unfortunately, t h i s  run was terminated prematurely due t o  a coolant f a i l u r e  i n  

the d i f f u s i o n  pump,but the resu l t s  were w i th in  a few degrees of the steadv-state 

resu l ts  according t o  Equation ( 2 ) .  Figure 28 presents the tabulated resu l t s  

o f  a l l  the temperatures a t  the end o f  Runs No. 1, 2  and 4. 
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APPROACH CRUISE 1 HERMAL ANALYSIS 
The external temperature, TMLI, a t  some o f  the locations on the model w e n  

very high. A simple neat balance using these temperatures indicated a t o ta l  heat 

loss o f  nearly 30 watts. Since only e ight  watts were actual ly  being applied, the 
P 

externzl temperature readings must have been i n  error .  As shown i n  Figure 29, the 

temperatures decreased as the TIC wire length from the wire bundle increased. A1 1 

wires are routed inside the bundle, and the i n t e r i o r  o f  the bundle i s  control led 

t o  the Probe temperature t o  minimize the heat leak f r o m  the probe. The erroneous 

temperatures were from heat leaking down the T I C  wire. Calculations o f  MLI per- 

formance were made f o r  only those TIC'S located more than 60 cm from the wire 

bundle. 

The MLI performance can be expressed i n  terms o f  an e f fec t i ve  conductance, 

'eff , or an effective mit tance,  E*. Figure 30 presents the resu l ts  o f  the ca l -  

culat ion f o r  Ceff  and E*. The nose-tip region, T I C  129, apparently had a 

higher conduttance but  the higher value could be i n  error .  As shown i n  

Figure 22, the structural  walkway i a  the chamber was d i r ec t l y  opposite t h i s  nose 

t i p  region. This walkway would be a t  a higher temperature than the LN2 wall  

temperature (90°K) used i n  the calculat ions o f  the conductance, resulting i n  an 

apprrrently high conductance value. For t h i s  reason, data from TIC 129 was not  

used i rr cal  cu1 a t ing the perfonance. 

An average conductance value o f  0.70 x w a t t s / c ~ n ~ / ~ ~  was obtained by 

averagt lg the s i x  calculated values f o r  TIC 123 and T/C 146. This value i s  very 

2 close t o  the design value of 0.68 x log6 wattslcm / O K .  This i s  a very encouraging 

resu l t  because the predictabi l  f t y  of the Probe temperatures i s  h ighly dependent on 

how close the MLI performance can be estimated. Because o f  the l o s t  data, we were 

not  able t o  predict  the performance of the circumferential  j o i n t .  



DISTANCE FROT TElllPERATrlRE I W I R F O L I  1 TIC / R U J . 2  I 

EXTERNAL THERYOCOUPLE READINGS 
RUN NO, 2 

Figure 29 

Tlr: 
\ 

A c w F  I * A cEFF I &FF I 

I 

RUN NO. 1 &3 a 4 3  35 .OW 
RUN NO, 2 A7 a 3 3  a7 5 
RUN NO. 3 m a 3 3  A m1 

ESTIMATED INSULATION PERFGRMANCE 
Figure 30 

35 



ANALYTIC SIMULATION CORRELATION 
To ve r i f y  t he  analysis techniques, the  ana ly t i c  s imulat ion described i n  

Figure 9 was cor re la ted  t o  the t e s t  data. Previous work had shown t h a t  the heat 

f low paths i n  the attachment f i t t i n g  area were important. I n  addi t ion,  areas t h a t  

involved small contact conductance values ,such as the foam c o l l a r  around the attach- 

ment f i t t i n g s  and the r i n g  t o  a f t  dome attachment,presented uncer ta int ies i n  the 

simulation. Four items t h a t  were varied t o  cor re la te  the data were: 

O E f fec t ive  conduction length from the attachment f i t t i n g  t o  the a f t  heat 

sh ie ld  

O Contact conductance between the foam c o l l a r  and the a f t  heat sh ie ld  

O Contact conductance accross the attachment between the a f t  heat sh ie ld  and 

the upper r i n g  on the aeroshell 

O MLI performance 

The MLI performance was approximately def ined by the data reduct ion o f  the 

external T/Cts, bu t  t h i s  data d i d  no t  account f o r  heat leaks from the j o in t s .  

Increases o f  15% t o  20% i n  the  Ceff and E* values were allowed t o  account f o r  these 

addi t ional  heat leaks. As an i l l u s t r a t i o n  o f  the  effect, a 20% increase i n  E *  re -  

su l ted i n  about a 4°K r i s e  i n  the ba t te ry  temperature. The contact conductance 

between the upper r i n g  and tne a f t  heat sh ie ld  was used as the  co r re la t i ng  var iable 

f o r  the temperature on the apex o f  the a f t  Come, but  i t  a lso  had an e f f e c t  on the 

ba t te ry  temperature. 4s an example, an order o f  n~agni tude decrease i n  the  con- 

duct ion changed the  ba t te ry  temperature by 7°K and apex temperature by 3°K. The 

foam col l a r  contact conductance was a m i  nor influence: doubl i n g  the conductance 

changes the ba t te ry  temperature by less than 1°K. The e f f e c t i v e  conduction length 

from the attachment f i t t i n g  t o  the a f t  heat sh ie ld,  though, was an e f f e c t i v e  

corre lator .  Decreasing the e f f e c t i v e  length by 30% lowered the ba t te ry  tempera- 

t u re  by 3 O K .  

36 



The ana ly t i c  simulat ion was cor re la ted  uslng both Ceff and =*. Results o f  

the two cor re la t ions  are presented i n  figure 31, and show a  b e t t e r  data fit 

using the  e f f e c t i v e  emiss iv i ty  representations. Thus, C* was chosen f o r  the 

f i n a l  cor re la t ion .  The co r re la t i ng  parameters t h a t  produced the best f i t  f o r  

the a n a l y t i c  simulations were: 

E f f e c t i v e  blanket emiss iv i ty  = 0.005 

Ef fec t i ve  conduction length  from f i t t i n g  t o  the 
a f t  heat sh ie ld  = 2.0 cm 

Conductance between foam c o l l a r  and 
a f t  heat sh ie ld  2 = 2.0 x l o w 3  wattslcm / O K  

Total  conductance between top r i n g  and a f t  heat 
sh ie ld  = 0.44 watt/OK 

Even w i t h  the e f f e c t i v e  emiss iv i  t y  cor re la t ion ,  the ana ly t i c  s imulat ion has 

a  s l i g h t l y  higher slspe than the  t e s t  data between 10 and 12 watts. The 12 wat t  

data, though, was not  completely s tabi  1  i zed when the run was terminated due t o  a  

coolant fa i lu re .  I n  the  range o f  i n te res t ,  263 t o  283OK, a  good match ex is ts .  

Figure 32 presents a  comparative l i s t i n g  between the  ana ly t i c  s imulat ion and the 

t e s t  data, and indicates agreement w i t h i n  2°K. This co r re la t i on  v e r i f i e s  the 

ana ly t i c  s imulat ion techniques used i n  the analysis o f  the approach c ru ise  por t ions 

o f  the Probe mission. 
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INTERPLANETARY CRUISE TEST RESULTS 
The model was mated w i t h  the  conical adapter, and the  e n t i r e  conf igura t ion  

was suspended i n  the chamber on f o u r  0.16-cm dia.  s ta in less  s tee l  wires as shown i n  

F igure 33. The chamber was closed and pumped down. This  t ime i t  took less  than 

24 nours fo r  the  pressure t o  reach 1.2 x l o w 6  nm Hg i n d i c a t i n g  t h a t  the  v o l a t i l e s  

had been removed i n  the  f i r s t  ser ies o f  tests .  Figure 34 preser,ts the  t ime h i s t o r y  

of  t he  bootstrap ba t te ry  and adapter radiator .  The i n i t i a l  15-watt load on t l ie  

adapter was adjusted downward t o  lower the adapter temperature. At  the completion 

of Run No. 5, the temperature d i f f e ren t i a l  between the ba t te ry  and the  adapter 

rad ia to r  was 18°K. A l l  o f  the heaters were turned o f f  ig lower the temperature 

for t he  s t a r t  of Run No. 6. An i n i t i a l  load of s i x  watts was appl ied t o  the 

adapter. This load was too h igh fo r  t he  desired 244OK adapter rad ia tor .  As shown 

i n  Figure 35 a l l  heater power was turned o f f  t o  lower the temperature, and 

then the e i g h t w a t t  YHU power and a t h r e e w a t t  adapter heater power were appl ied 

t o  the  conf igurat ion. A t  the end of the tes t ,  the d i f f e r a c e  between the bat-  

t e r y  and the adapter rad ia to r  temperature was 39°K. A f t e r  Run No. 6, the equip- 

ment checkout power p r o f i l e  o f  Figure 8 was appl ied and the resu l t s  are shown 

i n  Figure 36 . As shown i n  Figure 36, t h i s  t rans ien t  p r o f i l e  introduced a 

maximum temperature change o f  less  than 5OK which w i l l  produce no problems t o  the 

Probe dur ing in te rp lanetary  cruise. Figure 37 presents the t ime h i s t o r i e s  f o r  

Run No. 8 which had a simulated RHU load o f  10 watts and an adapter load of three 

watts. A t  the end o f  the run there was 43OK temperature difference between the 

ba t te ry  and the adapter rad ia tor .  These cons is ten t ly  large temperature d i f f e r -  

e n t i a l s  could be a problem f o r  the Probe-to-Adapter spacecraft in tegra t ion .  

Figure 38 presents the  tabulated r e s u l t s  o f  a l l  three in te rp lanetary  c ru i se  

steady s ta te  resul ts .  Figure 39 shows a comparative tabu la t ion  of the  temperature 

p ro f i l es  f o r  the steady s t a t e  runs. 
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INTERPLANETARY CRUISE THERMAL ANALYSIS 

An ana ly t i c  simulat ion o f  t h e  combined adapter/mdel conf igurat ions was not  

b u i l t ,  but  some simple ana ly t i c  c a l c u l a t i o y ~ ~  were made. The adapter rad ia tors  

have a t o t a l  heat r e j e c t i o n  capacity of about three watts. For Runs No. 6 and No. 

8, t h i s  capacity matched the  t o t a l  adapter heat load, and thus the  heat i npu t  from 

the  probe aCtachment f i t t i n g  was re jec ted  by othev par ts  o f  t he  adapter. Figure 

40 presents estimates o f  the  heat loss through the  model MLI and through the  

attachment f i t t i n g s  t o  the adapter. I n  Runs No. 6 and No. 8 approximately 60% o f  

the  simulated RHU load was re jec ted  t o  the adapter. Because o f  the  add i t iona l  

adapter heat i n  Run No. 5 t o  simulate the hot-mode condi t ion w i t h  so la r  i npu t  

on the adapter, on ly  about 30% of t he  RHU load was t ransmit ted t o  the  adapter. 

The purpose o f  t h i s  t e s t  was no t  t o  design the adapter radiator /heater  system, 

bu t  was intended t o  provide the  necessary in ter face data. Figure 40 presents the  

thermal i n te r face  across the attachment f i t t i n g  (TIJ7 - TIs7) and between the  

adapter attachment f i t t i n g  and the ba t te ry  (TIo1 - T15-). The resu l t s  are con- 

s i s t e n t  between runs and can be used i n  the  pre l iminary design of the  Probe/Adapter 

thermal in ter face.  

WATTS INTERFACE RESISTANCE (%/WATT 
2 

QRHU Q THROUGH Q THROUGH 
MLI A FITTING QFTG %?. 

RUN NO, 5 8 53 2.7 38 a9 
RUN NO. 6 8 36 46 38 89 
RUN NO. 8 10 4J 5.9 2.5 7 3 

ADAPTER/MODEL 
TH EWAL INTERFACE 

Figure 40 
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POST-TEST OBSERVATIONS 

A f t e r  Run No. 8, the conf igurat ion was removed from the chamber. Some o f  

the aluminum tape around the exposed edges a f  the heat sh ie ld  around the f i t t i n g  

had pu l l ed  loose because the tape would not  adhere t o  the s i l i c o n e  heat sh ie ld  

material .  When the a f t  heat sh ie ld  was removed, we found tha t  the a f t  polyurethane 

foam cover had broken apa:t. Figure 41 shows the r e s u l t  o f  t h i s  occurrence. 1 he 

3 foam insu la t i on  was 32 kg/m (2 l b / f t 3 )  polyurethane foam. The outside surface o f  C 

i nsu la t i on  was sealed and t h i s  sealer probably caused the foam t o  break when the 

chamber was evacuated. Although the visual impact o f  the f a i l u f - e  was dramatic, the 

so lu t ion  i s  simple. A stronger foam rvithout the sealer, an open-cell , o r  a f ibrous 

insu la t i on  could be used. The a f t  foam cover aids the descent thermal contro l  but  

has 1 i t t l e  e f f e c t  on the approach cru ise  temperatures, and thus the foam f a i l u r e  

w i l l  not inva l  i da te  the thermal performance charac ter is t i cs  o f  the model. 





COWLUSIONS nd RECOMMENDATIONS 
The thermal vacuum t e s t  has v e r i f i e d  the passive thermal cont ro l  concept f o r  

the  approach c ru ise  phase o f  the mission. The t e s t  procedures developed f o r  t h i s  

program s i g n i f i c z n t l y  reduced the t e s t  time. These same procedures could be 

used t o  reduce the cost o f  running fu tu re  tests.  The ana ly t i c  s imulat ion o f  t he  

hodel was corre lated t o  the  t e s t  data. This cor re la ted  s imulat ion w i l l  add a h igh  

degree a f  confidence t o  fu tu re  t rade studies. 

The calculated MLI performance data was almost i d e n t i c a l  t o  p re tes t  estimates, 

and the ana ly t i c  simulat ion could be cor re la ted  w i t h  performance values w i t h i n  20% 

o f  the pre tes t  design value. This p r e d i c t a b i l i t y  was b e t t e r  than had been ant ic ipated, 

and i s  s i g n i f i c a n t  i n  v e r i f y i n g  t h a t  we can cont ro l  the  Probe passively w i th  re la -  

t i  vely  few RHU's and w i t h  a good degree of accuracy. To be conservative, a design 

value o f  E* = 0.005 - + .0025 (e.g., fL 50%) i s  recommended i n  fu tu re  analysis. 

The in terp lanetary c ru i se  t e s t  resul t s  i nd i ca te  t h a t  t he  adapter must r e j e c t  

60% o f  the  Probe RHU heat a t  adapter temperature o f  less  than 233OK. More d e t a i l s  

o f  the  spacecraft conf igurat ion are needed t o  f u l l y  assess t h i s  problem. To a i d  

fu tu re  analysis, the i n te r face  conductance between the  model and the adapter was 

calculated from the t e s t  data. Large temperature gradients were measured between 

the b3 t te ry  and the adapter attachment f i t t i n g .  

I t  i s  recommended tha t  the heat sh ie ld  and honeycomb mater ia l  should he vacuun 

baked befoce i n s t a l l a t i o n  t o  remove excess v o l a t i l e s .  It i s  also recmet lded t h a t  

the j o i n t s  i n  the MLI be sealed w i t h  tape t o  prevent puckering. Last ly ,  i t  

i s  r rotnr;lended tha t  the a f t  i nsu la t i on  cover mater ia l  should be tested t o  insure 

t h a t  i t  w i l l  no t  break apar t  during decompresiion during launch. 
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